• Skip to main content
  • Skip to header right navigation
  • Skip to site footer

1-800-685-2088 | support@mat-cs.com

  • LinkedIn
MAT-CS - Materials Characterization Services

Materials Characterization Services

  • Home
  • About
    • Meet the Team
    • Consulting
  • Analytical Techniques
    • Bulk Analysis
    • Microscopy and Microanalytical
    • Surface and Thin Film
    • Polymer Characterization
    • Optical Measurements
    • Liquids and Gases
    • Electrical / Electronics
    • Reliability Testing
    • Miscellaneous
  • Test Methods
    • ASTM Methods List
    • ISO Methods List
    • AATCC
    • AOAC
    • AOCS
    • EPA, SM
    • FDA BAM
    • IP
    • JEDEC
    • MIL-STD
    • OCSPP
    • OPPTS
    • REACH
    • RoHS
    • SEMI
    • TAPPI
    • USP/EP/JP
  • Resources
    • Experiment Design
    • Consulting
    • The Laboratory Landscape
    • Quality Programs
    • Regulatory-Based Analyses
  • Contact
  • Get a Quote!
MAT-CS Home Cover

ASTM C1074

ASTM C1074 – Standard Practice for Estimating Concrete Strength by the Maturity Method

Description:

Significance and Use

5.1 This practice can be used to estimate the in-place strength of concrete to allow the start of critical construction activities such as: (1) removal of formwork and reshoring; (2) post-tensioning of tendons; (3) termination of cold weather protection; and (4) opening of roadways to traffic.

5.2 This practice can be used to estimate strength of laboratory specimens cured under non-standard temperature conditions.

5.3 The major limitations of the maturity method are: (1) the concrete must be maintained in a condition that permits cement hydration; (2) the method does not take into account the effects of early-age concrete temperature on the long-term strength (see Note 6) (3, 4); and (3) the method needs to be supplemented by other indications of the potential strength of the field concrete.

5.4 The accuracy of the estimated strength depends, in part, on using the appropriate parameters (datum temperature or value of Q) for the maturity functions described in Section 6.

NOTE 1: Approximate values of the datum temperature, To, and the Q-value for use in Eq 1 or Eq 2, respectively, are given in Appendix X2. If maximum accuracy of strength estimation is desired, the appropriate values of To or Q for a specific concrete mixture may be determined using the procedures given in Appendix X1.

Scope

1.1 This practice provides a procedure for estimating concrete strength by means of the maturity method. The maturity index is expressed either in terms of the temperature-time factor or in terms of the equivalent age at a specified temperature.

1.2 This practice requires establishing the strength-maturity relationship of the concrete mixture in the laboratory and recording the temperature history of the concrete for which strength is to be estimated.

1.3 The values stated in SI units are to be regarded as standard for determining the maturity index. No other units of measurement are included for this purpose. There is, however, no restriction on the system of units for expressing strength in developing the strength-maturity relationship.

Related Test Methods

ASTM D5028

ASTM D5026

ASTM D5024

ASTM D5023

ASTM D5016

ASTM D5009

ASTM D5007

ASTM D5006

ASTM D5004

ASTM D5003

ASTM D5002

ASTM D5001

Previous Post:MAT-CS Home CoverASTM C1070
Next Post:ASTM C1077MAT-CS Home Cover

Ready to start your analysis?

Get a Quote!
MAT-CS

Your One Source for Materials Analysis

1-800-685-2088

support@mat-cs.com

  • Home
  • Analytical Techniques
  • Test Methods
  • Resources
  • Contact Us
  • Get a Quote!
  • Special Analysis Request

  • LinkedIn

Copyright © 2025 by Materials Characterization Services ยท All Rights Reserved
Website Built, Hosted, and Managed by Digital Donkey Marketing