• Skip to main content
  • Skip to header right navigation
  • Skip to site footer

1-800-685-2088 | support@mat-cs.com

  • LinkedIn
MAT-CS - Materials Characterization Services

Materials Characterization Services

  • Home
  • About
    • Meet the Team
    • Consulting
  • Analytical Techniques
    • Bulk Analysis
    • Microscopy and Microanalytical
    • Surface and Thin Film
    • Polymer Characterization
    • Optical Measurements
    • Liquids and Gases
    • Electrical / Electronics
    • Reliability Testing
    • Miscellaneous
  • Test Methods
    • ASTM Methods List
    • ISO Methods List
    • AATCC
    • AOAC
    • AOCS
    • EPA, SM
    • FDA BAM
    • IP
    • JEDEC
    • MIL-STD
    • OCSPP
    • OPPTS
    • REACH
    • RoHS
    • SEMI
    • TAPPI
    • USP/EP/JP
  • Resources
    • Experiment Design
    • Consulting
    • The Laboratory Landscape
    • Quality Programs
    • Regulatory-Based Analyses
  • Contact
  • Get a Quote!
MAT-CS Home Cover

ASTM C1099

ASTM C1099 – Standard Test Method for Modulus of Rupture of Carbon-Containing Refractory Materials at Elevated Temperatures

Description:

Significance and Use

3.1 The modulus of rupture of carbon-containing refractories at elevated temperatures has become accepted as a useful measurement in quality control testing and in research and development. These measurements are also used to determine the suitability of particular products for various applications and to develop specifications. The sample may undergo some oxidation during the test.

3.2 In 1988, ruggedness testing was conducted on this test procedure. The following variables were studied:

3.2.1 Testing temperature (2525 (1385) versus 2575 °F (1413 °C)),

3.2.2 Air atmosphere versus argon atmosphere in the furnace,

3.2.3 Hold time prior to breaking the sample (12 versus 18 min), and

3.2.4 Loading rate on the sample (175 (778) versus 350 lb/min (1556 N/min)).

3.3 Resin-bonded magnesia-carbon brick containing approximately 17 % carbon after coking were tested in two separate ruggedness tests. Metal-free brick were tested in the first ruggedness test, while aluminum-containing brick were tested in the second. Results were analyzed at a 95 % confidence level.

3.4 For the metal-free brick, the presence of an argon atmosphere and hold time had statistically significant effects on the modulus of rupture at 2550 °F (1400 °C). The argon atmosphere yielded a lower modulus of rupture. The samples tested in air had a well-sintered decarburized zone on the exterior surfaces, possibly explaining the higher moduli of rupture. The longer hold time caused a lower result for the metal-free brick.

3.5 For the aluminum-containing brick, testing temperature, the presence of an argon atmosphere, and loading rate had statistically significant effects on the modulus of rupture at 2550 °F (1400 °C). The higher testing temperature increased the measured result, the presence of an argon atmosphere lowered the result, and the higher loading rate increased the result.

Scope

1.1 This test method covers the determination of the modulus of rupture of carbon-containing refractories at elevated temperatures in air.

1.2 The values stated in inch-pound units and degrees Fahrenheit are to be regarded as standard. The values given in parentheses are for information only.

Related Test Methods

ASTM D483

ASTM D4829

ASTM D4828

ASTM D4824

ASTM D482

ASTM D4815

ASTM D4814

ASTM D4812

ASTM D4811

ASTM D4810

ASTM D4809

ASTM D4808

Previous Post:MAT-CS Home CoverASTM C1090
Next Post:ASTM C110MAT-CS Home Cover

Ready to start your analysis?

Get a Quote!
MAT-CS

Your One Source for Materials Analysis

1-800-685-2088

support@mat-cs.com

  • Home
  • Analytical Techniques
  • Test Methods
  • Resources
  • Contact Us
  • Get a Quote!
  • Special Analysis Request

  • LinkedIn

Copyright © 2025 by Materials Characterization Services · All Rights Reserved
Website Built, Hosted, and Managed by Digital Donkey Marketing