ASTM C16 – Standard Test Method for Load Testing Refractory Shapes at High Temperatures
Description:
Significance and Use
3.1 The ability of refractory shapes to withstand prescribed loads at elevated temperatures is a measure of the high-temperature service potential of the material. By definition, refractory shapes must resist change due to high temperature, and the ability to withstand deformation or shape change when subjected to significant loading at elevated temperatures is clearly demonstrated when refractory shapes are subjected to this test method. The test method is normally run at a sufficiently high temperature to allow some liquids to form within the test brick or to cause weakening of the bonding system. The result is usually a decrease in sample dimension parallel to the applied load and increase in sample dimensions perpendicular to the loading direction. Occasionally, shear fracture can occur. Since the test provides easily measurable changes in dimensions, prescribed limits can be established, and the test method has been long used to determine refractory quality. The test method has often been used in the establishment of written specifications between producers and consumers.
3.2 This test method is not applicable for refractory materials that are unstable in an oxidizing atmosphere unless means are provided to protect the specimens.
Scope
1.1 This test method covers the determination of the resistance to deformation or shear of refractory shapes when subjected to a specified compressive load at a specified temperature for a specified time.
1.2 The values stated in inch-pound units are to be regarded as standard. The values given in parentheses are mathematical conversions to SI units that are provided for information only and are not considered standard.