• Skip to main content
  • Skip to header right navigation
  • Skip to site footer

1-800-685-2088 | support@mat-cs.com

  • LinkedIn
MAT-CS - Materials Characterization Services

Materials Characterization Services

  • Home
  • About
    • Meet the Team
    • Consulting
  • Analytical Techniques
    • Bulk Analysis
    • Microscopy and Microanalytical
    • Surface and Thin Film
    • Polymer Characterization
    • Optical Measurements
    • Liquids and Gases
    • Electrical / Electronics
    • Reliability Testing
    • Miscellaneous
  • Test Methods
    • ASTM Methods List
    • ISO Methods List
    • AATCC
    • AOAC
    • AOCS
    • EPA, SM
    • FDA BAM
    • IP
    • JEDEC
    • MIL-STD
    • OCSPP
    • OPPTS
    • REACH
    • RoHS
    • SEMI
    • TAPPI
    • USP/EP/JP
  • Resources
    • Experiment Design
    • Consulting
    • The Laboratory Landscape
    • Quality Programs
    • Regulatory-Based Analyses
  • Contact
  • Get a Quote!
MAT-CS Home Cover

ASTM C423

ASTM C423 – Standard Test Method for Sound Absorption and Sound Absorption Coefficients by the Reverberation Room Method

Description:

Significance and Use

5.1 Measurement of the sound absorption of a room is part of the procedure for other acoustical measurements, such as determining the sound power level of a noise source or the sound transmission loss of a partition. It is also used in certain calculations such as predicting the sound pressure level in a room when the sound power level of a noise source in the room is known.

5.2 The sound absorption coefficient of a surface is a property of the material composing the surface. It is ideally defined as the fraction of the randomly incident sound power absorbed by the surface, but in this test method it is operationally defined in 4.2. The relationship between the theoretically defined and the operationally measured coefficients is under continuing study.

5.3 Diffraction effects4 usually cause the apparent area of a specimen to be greater than its geometrical area, thereby increasing the coefficients measured according to this test method. When the test specimen is highly absorptive, these values may exceed unity.

5.4 The coefficients measured by this test method should be used with caution because not only are the areas encountered in practical usage usually larger than the test specimen, but also the sound field is rarely diffuse. In the laboratory, measurements must be made under reproducible conditions, but in practical usage the conditions that determine the effective absorption are often unpredictable. Regardless of the differences and the necessity for judgment, coefficients measured by this test method have been used successfully by architects and consultants in the acoustical design of architectural spaces.

5.5 Field Measurements—When sound absorption measurements are made in a building in which the size and shape of the room are not under the operator’s control, the approximation to a diffuse sound field is not likely to be very close. This matter should be considered when assessing the accuracy of measurements made under field conditions. (See Test Method E2235 for a procedure that can be used in the field with less sophisticated instrumentation.)

Scope

1.1 This test method covers the measurement of sound absorption in a reverberation room by measuring decay rate. Procedures for measuring the absorption of a room, the absorption of an object, such as an office screen, and the sound absorption coefficients of a specimen of sound absorptive material, such as acoustical ceiling tile, are described.

1.2 Field Measurements—Although this test method covers laboratory measurements, the test method described in 4.1 can be used for making field measurements of the absorption of rooms (see also 5.5). A method to measure the absorption of rooms in the field is described in Test Method E2235.

1.3 This test method includes information on laboratory accreditation (see Annex A1), asymmetrical screens (see Annex A2), and reverberation room qualification (see Annex A3).

1.4 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

Related Test Methods

ASTM D483

ASTM D4829

ASTM D4828

ASTM D4824

ASTM D482

ASTM D4815

ASTM D4814

ASTM D4812

ASTM D4811

ASTM D4810

ASTM D4809

ASTM D4808

Previous Post:MAT-CS Home CoverASTM C42
Next Post:ASTM C430MAT-CS Home Cover

Ready to start your analysis?

Get a Quote!
MAT-CS

Your One Source for Materials Analysis

1-800-685-2088

support@mat-cs.com

  • Home
  • Analytical Techniques
  • Test Methods
  • Resources
  • Contact Us
  • Get a Quote!
  • Special Analysis Request

  • LinkedIn

Copyright © 2025 by Materials Characterization Services · All Rights Reserved
Website Built, Hosted, and Managed by Digital Donkey Marketing