• Skip to main content
  • Skip to header right navigation
  • Skip to site footer

1-800-685-2088 | support@mat-cs.com

  • LinkedIn
MAT-CS - Materials Characterization Services

Materials Characterization Services

  • Home
  • About
    • Meet the Team
    • Consulting
  • Analytical Techniques
    • Bulk Analysis
    • Microscopy and Microanalytical
    • Surface and Thin Film
    • Polymer Characterization
    • Optical Measurements
    • Liquids and Gases
    • Electrical / Electronics
    • Reliability Testing
    • Miscellaneous
  • Test Methods
    • ASTM Methods List
    • ISO Methods List
    • AATCC
    • AOAC
    • AOCS
    • EPA, SM
    • FDA BAM
    • IP
    • JEDEC
    • MIL-STD
    • OCSPP
    • OPPTS
    • REACH
    • RoHS
    • SEMI
    • TAPPI
    • USP/EP/JP
  • Resources
    • Experiment Design
    • Consulting
    • The Laboratory Landscape
    • Quality Programs
    • Regulatory-Based Analyses
  • Contact
  • Get a Quote!
MAT-CS Home Cover

ASTM D1816

ASTM D1816 – Standard Test Method for Dielectric Breakdown Voltage of Insulating Liquids Using VDE Electrodes

Description:

Lorem ipsum dolor sit amet, consectetur adipiscing elit. Aenean vulputate laoreet volutpat. Proin

Significance and Use

3.1 The dielectric breakdown voltage of an insulating liquid is of importance as a measure of the liquid’s ability to withstand electric stress without failure. The dielectric breakdown voltage serves to indicate the presence of contaminating agents such as water, dirt, cellulosic fibers, or conducting particles in the liquid, one or more of which may be present in significant concentrations when low breakdown voltages are obtained. However, a high dielectric breakdown voltage does not necessarily indicate the absence of all contaminants; it may merely indicate that the concentrations of contaminants that are present in the liquid between the electrodes are not large enough to deleteriously affect the average breakdown voltage of the liquid when tested by this test method (see Appendix X1.)

3.2 This test method is used in laboratory or field tests. For field breakdown results to be comparable to laboratory results, all criteria including room temperature (20 to 30 °C) must be met.

Scope

1.1 This test method covers the determination of the dielectric breakdown voltage of insulating liquids (oils of petroleum origin, silicone fluids, high fire-point mineral electrical insulating oils, synthetic ester fluids and natural ester fluids). This test method is applicable to insulating liquids commonly used in cables, transformers, oil circuit breakers, and similar apparatus as an insulating and cooling medium. Refer to Terminology D2864 for definitions used in this test method.

1.2 This test method is sensitive to the deleterious effects of moisture in solution especially when cellulosic fibers are present in the liquid. It has been found to be especially useful in diagnostic and laboratory investigations of the dielectric breakdown strength of insulating liquid in insulating systems.2

1.3 This test method is used to judge if the VDE electrode breakdown voltage requirements are met for insulating liquids. This test method should be used as recommended by professional organization standards such as IEEE C57.106.

1.4 This test method may be used to obtain the dielectric breakdown of silicone fluid as specified in Test Method D2225, Specification D4652, or Specification D6871, provided that the discharge energy into the sample is less than 20 mJ (milli joule) per breakdown for five consecutive breakdowns.

1.5 Both the metric and the alternative inch-pound units are acceptable.

Related Test Methods

ASTM D4950

ASTM D495

ASTM D4951

ASTM D4950

ASTM D495

ASTM D4948

ASTM D4946

ASTM D4943

ASTM D4940

ASTM D4935

ASTM D4929

ASTM D4928

Previous Post:MAT-CS Home CoverASTM D1815
Next Post:ASTM D1822MAT-CS Home Cover

Ready to start your analysis?

Get a Quote!
MAT-CS

Your One Source for Materials Analysis

1-800-685-2088

support@mat-cs.com

  • Home
  • Analytical Techniques
  • Test Methods
  • Resources
  • Contact Us
  • Get a Quote!
  • Special Analysis Request

  • LinkedIn

Copyright © 2025 by Materials Characterization Services · All Rights Reserved
Website Built, Hosted, and Managed by Digital Donkey Marketing