• Skip to main content
  • Skip to header right navigation
  • Skip to site footer

1-800-685-2088 | support@mat-cs.com

  • LinkedIn
MAT-CS - Materials Characterization Services

Materials Characterization Services

  • Home
  • About
    • Meet the Team
    • Consulting
  • Analytical Techniques
    • Bulk Analysis
    • Microscopy and Microanalytical
    • Surface and Thin Film
    • Polymer Characterization
    • Optical Measurements
    • Liquids and Gases
    • Electrical / Electronics
    • Reliability Testing
    • Miscellaneous
  • Test Methods
    • ASTM Methods List
    • ISO Methods List
    • AATCC
    • AOAC
    • AOCS
    • EPA, SM
    • FDA BAM
    • IP
    • JEDEC
    • MIL-STD
    • OCSPP
    • OPPTS
    • REACH
    • RoHS
    • SEMI
    • TAPPI
    • USP/EP/JP
  • Resources
    • Experiment Design
    • Consulting
    • The Laboratory Landscape
    • Quality Programs
    • Regulatory-Based Analyses
  • Contact
  • Get a Quote!
MAT-CS Home Cover

ASTM D3343

ASTM D3343 – Standard Test Method for Estimation of Hydrogen Content of Aviation Fuels

Description:

Significance and Use

5.1 This test method is intended for use as a guide in cases in which an experimental determination of hydrogen content is not available. Table 1 shows a summary for the range of each variable used in developing the correlation. The mean value and its distribution about the mean, namely the standard deviation, is shown. This indicates, for example, that the mean density for all fuels used in developing the correlation was 783.5 kg/m3 and that two thirds of the samples had a density between 733.2 kg/m3 and 841.3 kg/m3, that is, plus and minus one standard deviation. The correlation is most accurate when the values of the variables to be used in the equation are within one standard deviation of the mean, but is useful up to two standard deviations of the mean. The use of this correlation may be applicable to other hydrocarbon distillates similar to aviation fuels, but only limited data on nonaviation fuels were included in the correlation.

5.2 Hydrogen content is required to correct gross heat of combustion to net heat of combustion. Net heat is used in aircraft calculation because all combustion products are in the gaseous state, but experimental methods measure gross heat.

Scope

1.1 This test method covers the estimation of the hydrogen content (mass percent) of aviation gasolines and aircraft turbine and jet engine fuels.

1.2 This test method is empirical and is applicable to liquid hydrocarbon fuels that conform to the requirements of specifications for aviation gasolines or aircraft turbine and jet engine fuels of types Jet A, Jet A-1, Jet B, JP-4, JP-5, JP-7, and JP-8.

Note 1: The procedure for the experimental determination of hydrogen in petroleum fractions is described in Test Methods D1018, D3701, D5291, and D7171.

Note 2: The estimation of the hydrogen content of a hydrocarbon fuel is justifiable only when the fuel belongs to a well-defined class for which a relationship among the hydrogen content and the distillation range, density, and aromatic content has been derived from accurate experimental measurements on representative samples of that class. Even in this case, the possibility that the estimates may be in error by large amounts for individual fuels should be recognized. The fuels used to establish the correlation presented in this test method are defined by the following specifications:

FuelSpecification
Aviation gasolinesD910
Aircraft turbine and jet engine fuels 
 JP-4 and JP-5MIL-DTL-5624
 JP-7MIL-DTL-38219
 JP-8MIL-DTL-83133
 Jet A and Jet A-1D1655
Miscellaneous hydrocarbons
 No. 2 Diesel fuel
 Kerosene distillates (similar to Jet A)
 Miscellaneous (includes thinners, gasoline fractions, and unidentified blends)
 Special production fuels (commercial products of nearly pure hydrocarbons
  and special high-temperature fuels (HTF) produced for Air Force tests.
 Pure hydrocarbons

1.3 The values stated in SI units are to be regarded as the standard.

1.3.1 Exception—The values given in parentheses are for information only.

Related Test Methods

ASTM D483

ASTM D4829

ASTM D4828

ASTM D4824

ASTM D482

ASTM D4815

ASTM D4814

ASTM D4812

ASTM D4811

ASTM D4810

ASTM D4809

ASTM D4808

Previous Post:MAT-CS Home CoverASTM D3341
Next Post:ASTM D3345MAT-CS Home Cover

Ready to start your analysis?

Get a Quote!
MAT-CS

Your One Source for Materials Analysis

1-800-685-2088

support@mat-cs.com

  • Home
  • Analytical Techniques
  • Test Methods
  • Resources
  • Contact Us
  • Get a Quote!
  • Special Analysis Request

  • LinkedIn

Copyright © 2025 by Materials Characterization Services · All Rights Reserved
Website Built, Hosted, and Managed by Digital Donkey Marketing