• Skip to main content
  • Skip to header right navigation
  • Skip to site footer

1-800-685-2088 | support@mat-cs.com

  • LinkedIn
MAT-CS - Materials Characterization Services

Materials Characterization Services

  • Home
  • About
    • Meet the Team
    • Consulting
  • Analytical Techniques
    • Bulk Analysis
    • Microscopy and Microanalytical
    • Surface and Thin Film
    • Polymer Characterization
    • Optical Measurements
    • Liquids and Gases
    • Electrical / Electronics
    • Reliability Testing
    • Miscellaneous
  • Test Methods
    • ASTM Methods List
    • ISO Methods List
    • AATCC
    • AOAC
    • AOCS
    • EPA, SM
    • FDA BAM
    • IP
    • JEDEC
    • MIL-STD
    • OCSPP
    • OPPTS
    • REACH
    • RoHS
    • SEMI
    • TAPPI
    • USP/EP/JP
  • Resources
    • Experiment Design
    • Consulting
    • The Laboratory Landscape
    • Quality Programs
    • Regulatory-Based Analyses
  • Contact
  • Get a Quote!
MAT-CS Home Cover

ASTM D3919

ASTM D3919 – Standard Practice for Measuring Trace Elements in Water by Graphite Furnace Atomic Absorption Spectrophotometry (Withdrawn 2024)

Description:

Significance and Use

5.1 Elemental constituents in potable water, receiving water, and wastewater need to be identified for support of effective pollution control programs. Currently, one of the most sensitive and practical means for measuring low concentrations of trace elements is by graphite furnace atomic absorption spectrophotometry. ICP-MS may also be appropriate but at a higher instrument cost. See Test Method D5673.

Scope

1.1 This practice covers the general considerations for the quantitative determination of trace elements in water and wastewater by graphite furnace atomic absorption spectrophotometry. Furnace atomizers are a most useful means of extending detection limits; however, the practice should only be used at concentration levels below the optimum range of direct flame aspiration atomic absorption spectrophotometry. Because of differences between various makes and models of satisfactory instruments, no detailed operating instructions can be provided for each instrument. Instead, the analyst should follow the instructions provided by the manufacturer of a particular instrument.

1.2 Wavelengths, estimated detection limits, and optimum concentration ranges are given in the individual methods. Ranges may be increased or decreased by varying the volume of sample injected or the instrumental settings or by the use of a secondary wavelength. Samples containing concentrations higher than those given in the optimum range may be diluted or analyzed by other techniques.

1.3 This technique is generally not applicable to brines and seawater. Special techniques such as separation of the trace elements from the salt, careful temperature control through ramping techniques, or matrix modification may be useful for these samples.

1.4 The analyst is encouraged to consult the literature as provided by the instrument manufacturer as well as various trade journals and scientific publications.

1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.

Related Test Methods

ASTM D483

ASTM D4829

ASTM D4828

ASTM D4824

ASTM D482

ASTM D4815

ASTM D4814

ASTM D4812

ASTM D4811

ASTM D4810

ASTM D4809

ASTM D4808

Previous Post:MAT-CS Home CoverASTM D3916
Next Post:ASTM D3921MAT-CS Home Cover

Ready to start your analysis?

Get a Quote!
MAT-CS

Your One Source for Materials Analysis

1-800-685-2088

support@mat-cs.com

  • Home
  • Analytical Techniques
  • Test Methods
  • Resources
  • Contact Us
  • Get a Quote!
  • Special Analysis Request

  • LinkedIn

Copyright © 2025 by Materials Characterization Services ยท All Rights Reserved
Website Built, Hosted, and Managed by Digital Donkey Marketing