• Skip to main content
  • Skip to header right navigation
  • Skip to site footer

1-800-685-2088 | support@mat-cs.com

  • LinkedIn
MAT-CS - Materials Characterization Services

Materials Characterization Services

  • Home
  • About
    • Meet the Team
    • Consulting
  • Analytical Techniques
    • Bulk Analysis
    • Microscopy and Microanalytical
    • Surface and Thin Film
    • Polymer Characterization
    • Optical Measurements
    • Liquids and Gases
    • Electrical / Electronics
    • Reliability Testing
    • Miscellaneous
  • Test Methods
    • ASTM Methods List
    • ISO Methods List
    • AATCC
    • AOAC
    • AOCS
    • EPA, SM
    • FDA BAM
    • IP
    • JEDEC
    • MIL-STD
    • OCSPP
    • OPPTS
    • REACH
    • RoHS
    • SEMI
    • TAPPI
    • USP/EP/JP
  • Resources
    • Experiment Design
    • Consulting
    • The Laboratory Landscape
    • Quality Programs
    • Regulatory-Based Analyses
  • Contact
  • Get a Quote!
MAT-CS Home Cover

ASTM D4419

ASTM D4419 – Standard Test Method for Measurement of Transition Temperatures of Petroleum Waxes by Differential Scanning Calorimetry (DSC)

Description:

Significance and Use

5.1 DSC in a convenient and rapid method for determining the temperature limits within which a wax undergoes during transitions. The highest temperature transition is a solid-liquid transition associated with complete melting; it can guide the choice of wax storage and application temperatures. The solid-solid temperature transition is related to the properties of the solid, that is, hardness and blocking temperature.

Note 2: For a relatively narrow cut petroleum wax, the lowest transition will be a solid-solid transition. A narrow cut wax is one obtained by deoiling a single petroleum distillate with a maximum range of 120 °F between its 5 % and 95 % vol in accordance with Test Method D1160 boiling points (converted to 760 torr). The DSC method cannot differentiate between solid-liquid and solid-solid transitions. Such information must be predetermined by other techniques. In the case of blends, the lower temperature transition may be envelopes of both solid-liquid and solid-solid transitions.

5.2 Since petroleum wax is a mixture of hydrocarbons with different molecular weights, its transitions occur over a temperature range. This range is one factor that influences the width, expressed in °C, of the DSC peaks. The highest temperature transition is a first-order transition. If, for a series of waxes, there is supporting evidence that the highest temperature transition of each wax is the major first-order transition, its relative width should correlate with the relative width of the wax’s molecular weight distribution.

Scope

1.1 This test method covers the transition temperatures of petroleum waxes, including microcrystalline waxes, by differential scanning calorimetry (DSC). These transitions may occur as a solid-solid transition or as a solid-liquid transition.

1.2 The normal operating temperature range extends from 15 °C to 150 °C (Note 1).

1.3 The values stated in SI units are to be regarded as the standard.

Related Test Methods

ASTM D483

ASTM D4829

ASTM D4828

ASTM D4824

ASTM D482

ASTM D4815

ASTM D4814

ASTM D4812

ASTM D4811

ASTM D4810

ASTM D4809

ASTM D4808

Previous Post:MAT-CS Home CoverASTM D4417
Next Post:ASTM D4422MAT-CS Home Cover

Ready to start your analysis?

Get a Quote!
MAT-CS

Your One Source for Materials Analysis

1-800-685-2088

support@mat-cs.com

  • Home
  • Analytical Techniques
  • Test Methods
  • Resources
  • Contact Us
  • Get a Quote!
  • Special Analysis Request

  • LinkedIn

Copyright © 2025 by Materials Characterization Services · All Rights Reserved
Website Built, Hosted, and Managed by Digital Donkey Marketing