ASTM E1086 – Standard Test Method for Analysis of Austenitic Stainless Steel by Spark Atomic Emission Spectrometry
Description:
Significance and Use
5.1 The chemical composition of stainless steels must be determined accurately to ensure the desired metallurgical properties. This test method is suitable for manufacturing control and inspection testing.
Scope
1.1 This test method2 covers the analysis of austenitic stainless steel by spark atomic emission spectrometry for the following elements in the ranges shown
Element | Composition Range, % |
Chromium | 17.0 to 23.0 |
Nickel | 7.5 to 13.0 |
Molybdenum | 0.01 to 3.0 |
Manganese | 0.01 to 2.0 |
Silicon | 0.01 to 0.90 |
Copper | 0.01 to 0.30 |
Carbon | 0.005 to 0.25 |
Phosphorus | 0.003 to 0.15 |
Sulfur | 0.003 to 0.065 |
1.2 This test method is designed for the analysis of chill-cast disks or inspection testing of stainless steel samples that have a flat surface of at least 13 mm (0.5 in.) in diameter. The samples must be sufficiently massive to prevent overheating during the discharge and of a similar metallurgical condition and composition as the reference materials.
1.3 One or more of the reference materials must closely approximate the composition of the specimen. The technique of analyzing reference materials with unknowns and performing the indicated mathematical corrections (typically referred to as type standardization) may also be used to correct for interference effects and to compensate for errors resulting from instrument drift. A variety of such systems are commonly used. Any of these that will achieve analytical accuracy equivalent to that reported for this test method are acceptable.